94 research outputs found

    GLOTTAL EXCITATION EXTRACTION OF VOICED SPEECH - JOINTLY PARAMETRIC AND NONPARAMETRIC APPROACHES

    Get PDF
    The goal of this dissertation is to develop methods to recover glottal flow pulses, which contain biometrical information about the speaker. The excitation information estimated from an observed speech utterance is modeled as the source of an inverse problem. Windowed linear prediction analysis and inverse filtering are first used to deconvolve the speech signal to obtain a rough estimate of glottal flow pulses. Linear prediction and its inverse filtering can largely eliminate the vocal-tract response which is usually modeled as infinite impulse response filter. Some remaining vocal-tract components that reside in the estimate after inverse filtering are next removed by maximum-phase and minimum-phase decomposition which is implemented by applying the complex cepstrum to the initial estimate of the glottal pulses. The additive and residual errors from inverse filtering can be suppressed by higher-order statistics which is the method used to calculate cepstrum representations. Some features directly provided by the glottal source\u27s cepstrum representation as well as fitting parameters for estimated pulses are used to form feature patterns that were applied to a minimum-distance classifier to realize a speaker identification system with very limited subjects

    A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics

    Full text link
    Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions

    CompeteAI: Understanding the Competition Behaviors in Large Language Model-based Agents

    Full text link
    Large language models (LLMs) have been widely used as agents to complete different tasks, such as personal assistance or event planning. While most work has focused on cooperation and collaboration between agents, little work explores competition, another important mechanism that fosters the development of society and economy. In this paper, we seek to examine the competition behaviors in LLM-based agents. We first propose a general framework to study the competition between agents. Then, we implement a practical competitive environment using GPT-4 to simulate a virtual town with two types of agents, including restaurant agents and customer agents. Specifically, restaurant agents compete with each other to attract more customers, where the competition fosters them to transform, such as cultivating new operating strategies. The results of our experiments reveal several interesting findings ranging from social learning to Matthew Effect, which aligns well with existing sociological and economic theories. We believe that competition between agents deserves further investigation to help us understand society better. The code will be released soon.Comment: Technical report; 21 page

    Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in Multiple Anatomical Locations

    Full text link
    In oncology research, accurate 3D segmentation of lesions from CT scans is essential for the modeling of lesion growth kinetics. However, following the RECIST criteria, radiologists routinely only delineate each lesion on the axial slice showing the largest transverse area, and delineate a small number of lesions in 3D for research purposes. As a result, we have plenty of unlabeled 3D volumes and labeled 2D images, and scarce labeled 3D volumes, which makes training a deep-learning 3D segmentation model a challenging task. In this work, we propose a novel model, denoted a multi-dimension unified Swin transformer (MDU-ST), for 3D lesion segmentation. The MDU-ST consists of a Shifted-window transformer (Swin-transformer) encoder and a convolutional neural network (CNN) decoder, allowing it to adapt to 2D and 3D inputs and learn the corresponding semantic information in the same encoder. Based on this model, we introduce a three-stage framework: 1) leveraging large amount of unlabeled 3D lesion volumes through self-supervised pretext tasks to learn the underlying pattern of lesion anatomy in the Swin-transformer encoder; 2) fine-tune the Swin-transformer encoder to perform 2D lesion segmentation with 2D RECIST slices to learn slice-level segmentation information; 3) further fine-tune the Swin-transformer encoder to perform 3D lesion segmentation with labeled 3D volumes. The network's performance is evaluated by the Dice similarity coefficient (DSC) and Hausdorff distance (HD) using an internal 3D lesion dataset with 593 lesions extracted from multiple anatomical locations. The proposed MDU-ST demonstrates significant improvement over the competing models. The proposed method can be used to conduct automated 3D lesion segmentation to assist radiomics and tumor growth modeling studies. This paper has been accepted by the IEEE International Symposium on Biomedical Imaging (ISBI) 2023

    ELM of ELM-WD: An extremely low mass hot donor star discovered in LAMOST survey

    Full text link
    The Extremely Low Mass White Dwarfs (ELM WDs) and pre-ELM WDs are helium core white dwarfs with mass <0.3M<\sim 0.3M_{\odot}. They are formed in close binaries and have lost over half of their initial masses via Common Envelope (CE) ejection or stable Roche Lobe Over Flow (RLOF). Both evolution simulations and observations show that a lower mass limit for ELM WDs exists at 0.14M\approx0.14M_{\odot}. Here we report the discovery of an extremely low mass ELM WD, ID70904216 in LAMOST survey, that may be lower than the ELM WD mass limit. Based on LAMOST and P200 spectroscopic observations, ID70904216 shows orbital period Porb=P_{orb} = 0.219658 days and radial velocity semi-amplitude K1=317.33km/sK1=317.33km/s, which gives the mass function of 0.73MM_{\odot}, indicating the companion is a compact star. The low resolution spectra shows a F type star with Teff7361KT_{\rm eff} \sim 7361K without emission features. The temperature is consistent with that derived from SED fitting(7440K7440K) and multi-color light curve solution(7400K7400K). The optical light curves, in ZTF g, r and i bands and Catalina V band, show ellipsoidal variability with amplitudes 30%\approx30\%, suggesting that the visible companion is heavily tidal distorted. Combining with the distance from Gaia survey, the WD code modeling estimates that the mass of the visible star is M1=0.080.03+0.06MM1=0.08^{+0.06}_{-0.03}M_{\odot}, and the mass of the invisible star is M2=0.940.10+0.45MM2=0.94^{+0.45}_{-0.10}M_{\odot}. The radius of the visible donor is R=0.29±0.01RR=0.29\pm0.01R_{\odot}. The inclination angle is constrained between 60^{\circ} and 90^{\circ}. The observations indicate the system is a pre-ELM WD + WD/NS binary system with an extremely low mass hot donor below the 0.14M0.14M_{\odot} theoretical limit.Comment: 16 pages, 10 figure

    Orbital parameters for an ELM white dwarf with a white dwarf companion: LAMOST J033847.06+413424.2

    Full text link
    Double white dwarf systems are of great astrophysical importance in the field of gravitational wave and Type Ia supernova. While the binary fraction of CO core white dwarf is about a few percents, the extremely low mass white dwarfs are all thought to be within binary systems. In this work, we report the orbital solution of a double degenerate system: J033847.06+413424.24, an extremely low mass He core white dwarf orbiting a CO core white dwarf. With LAMOST and P200, time domain spectroscopic observations have been made and spectral atmosphere parameters are estimated to be Teff22500T_{\rm eff}\sim22500 K and log g5.6g\sim5.6 dex. Combining Gaia parallax, 3D extinction, and evolution tracks, we estimate a radius of 0.12\sim0.12 RR_{\odot} and a mass of 0.22\sim0.22 MM_{\odot}. With the 37 single exposure spectra, the radial velocities are measured and the orbital parameters are estimated to be P=0.1253132(1)P=0.1253132(1) days, K1=289±4K1=289\pm4 km/s and Vsys=41±3V_{sys}=-41\pm3 km/s. The radial velocity based system ephemeris is also provided. The light curves from several photometric surveys show no orbital modulation. The orbital solution suggests that the invisible companion has a minimum mass of about 0.60 MM_{\odot} and is 0.79\sim0.79 MM_{\odot} for an inclination of 60.060.0^{\circ}, indicating most probably a CO core white dwarf. The system is expected to merge in about 1 Gyr. With present period and distance (596\sim596 pc) it can not irradiate strong enough gravitational wave for LISA. More double degenerate systems are expected to be discovered and parameterized as the LAMOST survey goes on.Comment: 12 pages, 11 figure

    KwaiYiiMath: Technical Report

    Full text link
    Recent advancements in large language models (LLMs) have demonstrated remarkable abilities in handling a variety of natural language processing (NLP) downstream tasks, even on mathematical tasks requiring multi-step reasoning. In this report, we introduce the KwaiYiiMath which enhances the mathematical reasoning abilities of KwaiYiiBase1, by applying Supervised Fine-Tuning (SFT) and Reinforced Learning from Human Feedback (RLHF), including on both English and Chinese mathematical tasks. Meanwhile, we also constructed a small-scale Chinese primary school mathematics test set (named KMath), consisting of 188 examples to evaluate the correctness of the problem-solving process generated by the models. Empirical studies demonstrate that KwaiYiiMath can achieve state-of-the-art (SOTA) performance on GSM8k, CMath, and KMath compared with the similar size models, respectively.Comment: technical report. arXiv admin note: text overlap with arXiv:2306.16636 by other author
    corecore